theBlackboard.assertProblem();
theKnowledgeSources.reset();
while (!theController.isSolved || !theController.unableToProceed())
theController.processNextHint();
if (theBlackboard.isSolved())
return theBlackboard.retrieveSolution();
Теперь нам лучше всего дополнить алгоритм соответствующими архитектурными интерфейсами. Хотя в данный момент его дееспособность минимальна, но реализация в виде вертикального среза системной архитектуры позволяет проверить ключевые системные решения.
Посмотрим на две операции, определенные в классе decipher, а именно assertProblem и retrieveSolution. Первая из них интересна тем, что создает структуру доски. Опишем наш алгоритм следующим образом:
убрать из строки все начальные и концевые пробелы
if получилась пустая строка return
создать объект-предложение
занести предложение на доску
создать объект-слово (самое крайнее слева)
занести слово на доску
добавить слово к предложению
for каждый символ строки слева направо
if символ есть пробел
сделать текущее слово предыдущим
создать объект-слово
занести слово на доску
добавить слово к предложению
else
создать объект "буква шифра"
занести букву на доску
добавить букву к слову
В главе 6 уже упоминалось, что целью проектирования является создание наброска реализации. Эта запись представляет достаточно детализированный алгоритм, так что показывать его полную реализацию на C++ нет необходимости.
Операция retrieveSolution очень проста: она возвращает строку, записанную в данный момент на доске. Вызывая эту операцию до того как функция isSolved вернула значение True, можно получать частичные решения.
Реализация механизма предположений. Итак, мы умеем устанавливать и извлекать значения объектов доски. Теперь нам нужен механизм выдвижения высказывании об этих объектах. Этот механизм интересен ввиду его динамичности. При поиске решения предположения непрерывно создаются и отзываются, чем как раз и приводится в действие весь процесс.